Russian Federation
UDK 614.84 Пожарная охрана. Опасность пожара. Пожары
This article discusses a comprehensive study of pre-evacuation behavior of people in the event of an emergency. In this regard, it is advisable to use machine learning approaches, in particular neural networks, for data mining in the field of security. Statistical data obtained in emergency situations may be limited and generally uncertain, for this reason it is recommended to choose a neural network architecture - adaptive fuzzy inference Network System (ANFIS) based on the Takagi–Sugeno fuzzy inference system. The neural network architecture considered in the article in the form of an adaptive fuzzy inference network system architecture consists of five layers, where each layer performs a well-defined function. Data on the behavioral reaction of people before the evacuation to train an artificial neural network were obtained using such approaches as interviewing, questionnaire, survey.
model, artificial neural network, pre-evacuation behavior, adaptive fuzzy inference network system, machine learning, emergency situations, factors influencing behavior
1. Samarcev A.A., Ivaschenko V.A., Rezchikov A.F. [i dr.] Mul'tiagentnaya model' processa evakuacii lyudey iz pomescheniy pri vozniknovenii chrezvychaynyh situaciy // Upravlenie bol'shimi sistemami: sbornik trudov. - 2018. - № 72. - S. 217-244.
2. Kolodkin V.M., Chirkov B.V., Vashtiev V.K. Model' dvizheniya lyudskih potokov dlya upravleniya evakuaciey pri pozhare v zdanii // Vestnik Udmurtskogo universiteta. Matematika. Mehanika. Komp'yuternye nauki. - 2015. - T. 25. - № 3. - S. 430-438.
3. Matveev A.V. The model of the process of emergency evacuation from the building while using the self-rescue equipment in case of the fire. ARPN Journal of Engineering and Applied Sciences. 2018; 13(15): 4535-4542.
4. Kotkova E.A. Sistemno-dinamicheskaya model' rasprostraneniya paniki pri evakuacii iz obschestvennyh zdaniy // Nauchno-analiticheskiy zhurnal Vestnik Sankt-Peterburgskogo universiteta Gosudarstvennoy protivopozharnoy sluzhby MChS Rossii. - 2022. - № 1. - S. 182-194. - EDN TITMEC.
5. Kotkova E.A. Analiz podhodov k issledovaniyu povedeniya lyudey pri evakuacii v ekstremal'nyh situaciyah // Zdorov'e - osnova chelovecheskogo potenciala: problemy i puti ih resheniya. - 2021. - T. 16. - № 4. - S. 1476-1479. - EDN SKRFSM.
6. Samoshin D.A., Holschevnikov V.V. Problemy normirovaniya vremeni nachala evakuacii // Pozharovzryvobezopasnost'. - 2016. - T. 25. - № 5. - S. 37-51. - DOIhttps://doi.org/10.18322/PVB.2016.25.05.37-51. - EDN WAAOXZ.
7. Belyaeva K.S., Matveev A.V. Strukturnaya shema mul'tiagentnogo modelirovaniya povedeniya lyudey pri evakuacii v chrezvychaynyh situaciyah // Problemy obespecheniya bezopasnosti pri likvidacii posledstviy chrezvychaynyh situaciy. - 2018. - T. 1. - S. 70-73. - EDN YXLMXZ.
8. Avdeeva M.O., Danilova K.A. Ocenka vliyaniya osobennostey povedeniya lyudey na vremya evakuacii s pomosch'yu imitacionnogo modelirovaniya // Problemy upravleniya bezopasnost'yu slozhnyh sistem: Materialy XXVIII mezhdunarodnoy konferencii, Moskva, 16 dekabrya 2020 goda / Pod obschey redakciey A.O. Kalashnikova, V.V. Kul'by. - M.: Institut problem upravleniya im. V.A. Trapeznikova RAN, 2020. - S. 415-419. - DOIhttps://doi.org/10.25728/iccss.2020.24.42.075. - EDN PXLTUY.
9. Scherbakova T.V. Organizaciya evakuacii i povedenie lyudey pri pozharah // Ekonomika i socium. - 2021. - № 1-2(80). - S. 772-778. - EDN GUVRVR.
10. Kotkova E.A., Matveev A.V. Metodika intellektual'nogo prognozirovaniya effektivnosti upravleniya evakuaciey lyudey iz obschestvennyh zdaniy // Nauchno-analiticheskiy zhurnal Vestnik Sankt-Peterburgskogo universiteta Gosudarstvennoy protivopozharnoy sluzhby MChS Rossii. - 2021. - № 4. - S. 107-120. - EDN PLARHX.
11. Antyuhov V.I., Ostudin N.V. Primenenie sistem iskusstvennogo intellekta v deyatel'nosti dolzhnostnyh lic organov upravleniya MChS Rossii pri chrezvychaynyh situaciyah na transporte // Transport Rossii: problemy i perspektivy - 2016 : materialy Mezhdunarodnoy nauchno-prakticheskoy konferencii, Sankt-Peterburg, 29-30 noyabrya 2016 goda. - SPb: Institut problem transporta im. N.S. Solomenko RAN, 2016. - S. 246-249. - EDN VEWNJB.
12. Stankevich T.S. Razrabotka intellektual'noy sistemy prognozirovaniya dinamiki razvitiya lesnogo pozhara // Baltiyskiy morskoy forum: Materialy VII Mezhdunarodnogo Baltiyskogo morskogo foruma. V 6-ti tomah, Kaliningrad, 07-12 oktyabrya 2019 goda. - Kaliningrad: Kaliningradskiy gosudarstvennyy tehnicheskiy universitet, 2019. - S. 179-184. - EDN LZXFUC.
13. Arutyunyan V.G. Problema izvlecheniya teksta iz pamyati: associativnye i semanticheskie seti (konnekcionistskiy podhod) // Al'manah sovremennoy nauki i obrazovaniya. - 2013. - № 7(74). - S. 12-14. - EDN QISNJF.
14. Wei-Guo S. et al. Evacuation behaviors at exit in CA model with force essentials: A comparison with social force model // Physica A: Statistical Mechanics and its Applications. -2006. - V. 371. - №. 2. - P. 658-666.
15. Kalachin S.V. Prognozirovanie rasprostraneniya paniki sredi lyudey pri evakuacii iz zdaniya vo vremya pozhara // Bezopasnost' truda v promyshlennosti. - 2020. - № 10. - S. 77-82. - DOIhttps://doi.org/10.24000/0409-2961-2020-10-77-82.
16. Kas'yanik P.M. Sovremennye zarubezhnye issledovaniya povedeniya tolpy v ekstremal'nyh situaciyah // Prikladnaya yuridicheskaya psihologiya. - 2014. - № 3. - S. 157-164.
17. Canter D. Studies of human behaviour in fire: empirical results and their implications for education and design. - Building Research Establishment Report. - UK, 1985.